Game Theory taking over the world of PDEs

Luc Attia Raimundo Saona Bruno Ziliotto

Outline

Limit objects

- Asymptotic value in games
- Ø Homogenization in PDEs
- 2 Main research question
 - Parallel of frameworks
- Our contributions
 - Simple model
 - Ø Results so far

Asymptotic value in games Homogenization in PDEs

GAMES

Raimundo Saona Game-theoretical PDEs

Asymptotic value in games Homogenization in PDEs

Main research question

Question

What families of random games have a deterministic limit value?

Asymptotic value in games Homogenization in PDEs

Example: Continuous weigthed reachability

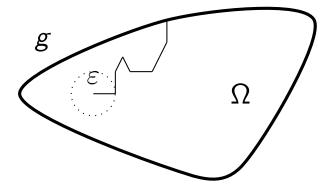


Figure 1: Continuous space reachability games

Raimundo Saona Game-theoretical PDEs

Asymptotic value in games Homogenization in PDEs

Dynamic

Consider the following dynamic, indexed by $\varepsilon>0$

- State space is \mathbb{R}^n
- Domain $\Omega \subset \mathbb{R}^n$
- Reward function $g: \Omega^c \to \mathbb{R}$
- Initial position $x \in \Omega$
- Infinite random turn-based game
- At each turn, the corresponding player chooses where to move the state within $B(x, \varepsilon)$
- When arriving at $x \in \Omega^c$, min-player pays g(x) to the max-player

Asymptotic value in games Homogenization in PDEs

.

Dynamic programming property

Let $u^{\varepsilon}: \Omega + B(0, \varepsilon) \to \mathbb{R}$ be the value. Then, for $x \in \Omega$,

$$u^{\varepsilon}(x) = \frac{1}{2} \left(\sup_{y \in B(x,\varepsilon)} u^{\varepsilon}(y), \inf_{y \in B(x,\varepsilon)} u^{\varepsilon}(y) \right)$$

Asymptotic value in games Homogenization in PDEs

Asymptotic value

In this game,

$$(u^{\varepsilon}) \xrightarrow[\varepsilon \to 0]{\varepsilon \to 0} u$$
,

such that u is the solution of

$$\begin{cases} \Delta_{\infty} u(x) = \sum_{i,j} \partial_{i,j}^2 u(x) \partial_i u(x) \partial_j u(x) = 0 & x \in \Omega \\ u(x) = g(x) & x \in \partial \Omega \end{cases}$$

Asymptotic value in games Homogenization in PDEs

Research question

Question

What games in \mathbb{R}^n have an asymptotic value?

The previous example shows that weigthed reachability has an asymptotic value.

Asymptotic value in games Homogenization in PDEs

Algorithmic perspective

For each $\varepsilon > 0$, this game is discrete in time and continuous in space.

Question

Is there a space discretization with probable approximation of the limit value function?

Answering this question requires proving rate of convergence in both continuous and discrete time settings.

Asymptotic value in games Homogenization in PDEs

PDEs

Raimundo Saona Game-theoretical PDEs

Asymptotic value in games Homogenization in PDEs

Example: Heat equation

Consider the heat equation.

$$\begin{cases} \partial_t u(t,x) - \Delta u(t,x) = \partial_t u(t,x) - \sum_i \partial_{i,i}^2 u(t,x) = 0 & x \in \Omega \\ u(0,x) = u_0(x) & x \in \Omega \end{cases}$$

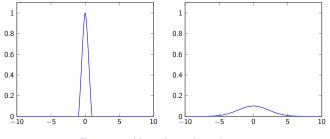


Figure 2: Heat kernel evolution

Heat equation in heterogeneous media

Consider the heat equation in a media.

$$\begin{cases} \partial_t u - \nabla (A \nabla u) = \partial_t u - \sum_i \partial_i \sum_j A_{i,j} \partial_j u = 0 & x \in \Omega \\ u(0, x) = u_0(x) & x \in \Omega \end{cases}$$

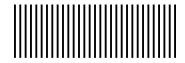


Figure 3: Heterogeneous periodic media

Asymptotic value in games Homogenization in PDEs

Heat equation: Homogenization limit

Consider the heat equation in a limit media. Let $\varepsilon > 0$,

$$\begin{cases} \partial_t u^{\varepsilon} - \nabla (A(x/\varepsilon)\nabla u^{\varepsilon}) = \partial_t u - \sum_i \partial_i \sum_j A_{i,j}(x/\varepsilon) \partial_j u^{\varepsilon} = 0 & x \in \Omega \\ u^{\varepsilon}(0,x) = u_0(x) & x \in \Omega \end{cases}$$

And consider the limit of u_{ε} , as $\varepsilon \to 0$.

Asymptotic value in games Homogenization in PDEs

Homogenization definition

Let $H: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ be a "hamiltonian". Define, for $\varepsilon > 0$,

$$\begin{cases} \partial_t u^{\varepsilon} + H(\nabla u^{\varepsilon}, x/\varepsilon) = 0 & x \in \Omega \\ u^{\varepsilon}(0, x) = u_0(x) & x \in \Omega \end{cases}$$

Definition (Homogenization)

The hamiltonian H presents homogenization if there is an effective hamiltonian \overline{H} such that $(u^{\varepsilon}) \xrightarrow[\varepsilon \to 0]{} u$, where u is the solution of

$$\begin{cases} \partial_t u + \overline{H}(\nabla u) = 0 & x \in \Omega \\ u(0, x) = u_0(x) & x \in \Omega \end{cases}$$

Asymptotic value in games Homogenization in PDEs

Homogenization question

Question

What Hamiltonians do homogenize?

Theorem (Sufficient conditions)

If H is periodic in the space variable, H homogenizes.

Asymptotic value in games Homogenization in PDEs

Stochastic homogenization

Since random medias are "periodic", consider now a random hamiltonian.

Definition (Stochastic Homogenization)

The random hamiltonian H presents homogenization if there is an *effective* hamiltonian \overline{H} such that $(U^{\varepsilon}) \xrightarrow[\varepsilon \to 0]{} u$, where u is the (deterministic) solution of

$$\begin{cases} \partial_t u + \overline{H}(\nabla u) = 0 & x \in \Omega \\ u(0, x) = u_0(x) & x \in \Omega \end{cases}$$

Asymptotic value in games Homogenization in PDEs

Stochastic Homogenization question

Question

What random Hamiltonians present stochastic homogenization?

Theorem (Sufficient conditions)

Under standard assumptions on H and **convexity** on the space variable, H has stochastic homogenization.

Theorem (Tightness on convexity)

There exists H astisfying standard assumptions but not convexity on the space variable, such that H does not have stochastic homogenization.

GAMES and PDEs

Game values and Hamiltonians

In (random) games, we ask if

$$(V^{\varepsilon}) \xrightarrow[\varepsilon \to 0]{\varepsilon \to 0} v.$$

In stochastic homogenization, we ask if

$$(H(\nabla u^{\varepsilon}, x/\varepsilon)) \xrightarrow[\varepsilon \to 0]{} \overline{H}(\nabla u).$$

Given a hamiltonian H, one may construct a game where the solution u^{ε} is the value of the game.

Question

Which hamiltonians have a game-theoretical interpretation?

Parallel frameworks

Main research question

Question

What families of random games have a deterministic limit value?

Simple model Results so far

GAMES in the plane

Simple model Results so far

Random game on the plane

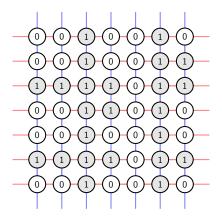


Figure 4: Average payoff game in random media

Simple model Results so far

Dynamic

Consider the following dynamic, indexed by $\varepsilon>0$

- $\bullet\,$ State space is \mathbb{Z}^2
- Random reward function $G \colon \mathbb{Z} \to \mathbb{R}$, where $G(z) \sim B(p)$, for $p \in [0,1]$
- Initial state is (0,0)
- Infinite turn-based game
- At each turn, the corresponding player chooses where to move the state:
 - Max-player chooses up or down
 - Min-player chooses *left* or *right*
- The reward is the discounted average

$$\varepsilon \sum_{n\in\mathbb{N}} (1-\varepsilon)^n G(z_n).$$

If you restrict the player to move in one direction, i.e. a state is never visited again, then [GZ21] show that (V^{ϵ}) converges to a deterministic limit.

The general framework is still open.

Question

Is there a limit value? Is the limit a constant?

Simple model Results so far

Percolation thresholds

Theorem

There exists $0 < p_0 < p_1 < 1$ such that

$$egin{array}{lll} (\mathcal{V}^arepsilon) & \longrightarrow & 0 & & orall p < p_0 \ (\mathcal{V}^arepsilon) & \longrightarrow & 1 & & orall p > p_1 \end{array}$$

Simple model Results so far

References I

Guillaume Garnier and Bruno Ziliotto. Percolation games. 2021.

Raimundo Saona Game-theoretical PDEs